Perpustakaan Fakultas Teknik

Universitas Mataram

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title

Tugas Akhir Informatika

Beef Quality Classification based on Texture and Color Features using SVM Classifier

Rani Farinda - Nama Orang;

Beef quality can be examined visually by observing the beef color or texture using human eyes. This manual method is very simple yet very subjective because of differences in knowledge about fresh or defective beef characteristics and differences in accuracy. Therefore, a system that can automatically classify beef quality whether it is still fresh or already defective is needed. In this research, we developed a system that can classify beef quality based on its color and texture features using Support Vector Machines classifier. Statistical approach and Gray Level Co-Occurrence Matrix (GLCM) methods were used for the feature extraction process. The total of data used in this research was 480 images, divided into training and testing datasets. The highest accuracy was 97% for cold beef when the system was tested using color features of HSI color space.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
00-847 .Ran.k
Penerbit
UNRAM : Fakultas Teknik Unram., 2018
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
00-847
Tipe Isi
other
Tipe Media
other
Tipe Pembawa
-
Edisi
Edisi 1 Jilid 1
Subjek
Beef Quality Classification based
Beef quality
Statistical approach
GLCM, SVM.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Farinda,Rani
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Beef Quality Classification based on Texture and Color Features using SVM Classifier
Komentar

Anda harus login sebelum memberikan komentar

Perpustakaan Fakultas Teknik
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Ruang Baca Fakultas Teknik

Kami menyedian Buku ajar ilmu teknik dan Tugas Akhir mahaiswa Fakultas Teknik Universitas Mataram

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik