Perpustakaan Fakultas Teknik

Universitas Mataram

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title

Tugas Akhir Informatika

Pengenalan Pola Wajah Menggunakan Metode Block-Eigenface pada Raspberry Pi

Arbhi Anggara - Nama Orang;

Rapid technological development has created a human face recognition system. The use of this facial recognition system spread to various fields. One of them is the security field that uses this system for authentication which is usually applied to Internet of Things based systems. The Raspberry Pi microprocessor is used as a place to implement a face recognition system to fulfil the IoT requirements. This facial recognition system measures qualitatively the characteristics of the human face, such as the shape of the face, eyes, nose, and mouth. There are many methods for measuring facial characteristics. One of them is the Block-Eigenface method which is a derivative of the Eigenface method. This method is a development method that applies blocking to the original method. Two datasets were used in this study, the first was a dataset from the results of data collection with 100 images of 10 classes (dataset Informatics), and the second dataset was commonly used was the ORL dataset with 400 images of 40 classes. The blocking done has an effect on the accuracy and computational time of the original method. In the Informatics dataset the Eigenface method got 84% results with a classification time of 0.003 seconds, the Block-Eigenface method got an accuracy of 98% with a classification time of 0.094 seconds. The ORL dataset provided an average accuracy of 55.42% with an average classification time of 0.014 seconds on the Eigenface method and 82.22% with an average classification time of 0.019 seconds on Block-Eigenface.


Ketersediaan
2018163621.388 1.Arb.pTersedia
Informasi Detail
Judul Seri
-
No. Panggil
621.388 1.Arb.p
Penerbit
Universitas Mataram : Fakultas Teknik Unram., 2019
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
621.388 1
Tipe Isi
other
Tipe Media
other
Tipe Pembawa
-
Edisi
Edisi 1 Jilid 1
Subjek
Pola Wajah Menggunakan Metode Block-Eigenface
Face Recognition, Raspberry Pi
Eigenface, Block-Eigenface, Internet of Things.
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Arbhi Anggara
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Pengenalan Pola Wajah Menggunakan Metode Block-Eigenface pada Raspberry Pi
Komentar

Anda harus login sebelum memberikan komentar

Perpustakaan Fakultas Teknik
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Ruang Baca Fakultas Teknik

Kami menyedian Buku ajar ilmu teknik dan Tugas Akhir mahaiswa Fakultas Teknik Universitas Mataram

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik