Perpustakaan Fakultas Teknik

Universitas Mataram

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title

Tugas Akhir Informatika

KLASIFIKASI KUALITAS KESEGARAN BUAH SEMANGKA BERDASARKAN FITUR WARNA YCbCr MENGGUNAKAN ALGORITMA WEIGTHED K-MEANS

Lalu Zulfikar Muslim - Nama Orang;

In this digital era, the processes of controlling the quality of fruits are done by various researchers using computer vision. For a faster and easier sorting process, the classification of fruit quality on a computer using image data is very necessary. In addition, this can also be used in making decisions and policies related to business strategies in the industry. In this research, the quality classification of watermelon was carried out using the Weighted K-Means Algorithm. The classification of watermelon fruit in this study was divided into three groups, namely fresh, medium, and rotten. The classification process in the system created is divided into two stages, namely training and examinations.The data that is input into the system is watermelon image data in YCbCr format. In the training phase, the input data that is processed is image data that has been classified. As for the testing/classification phase, the input data processed is an arbitrary image that has not been classified.The results of the classification with watermelon case studies using the weighted k-means algorithm obtained a conclusion that the greater the amount of training data, the computing time needed for the training and testing process will increase, as well as the level of accuracy, precision and recall of the classification results obtained will also get better. While the greater the number of k values, the computational time needed for the training and testing process will increase, but the level of accuracy, precision, and recall of the results of the classification that gets smaller.


Ketersediaan
2018184635.611 7.Lal.Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
635.611 7.Lal.
Penerbit
Universitas Mataram : Fakultas Teknik Unram., 2019
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
635.611 7
Tipe Isi
other
Tipe Media
other
Tipe Pembawa
-
Edisi
Edisi 1 Jilid 1
Subjek
KUALITAS KESEGARAN BUAH SEMANGKA
Weighted K-Means Algorithm
Fruit Classification, YCbCr, Pattern Recognition
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Lalu Zulfikar Muslim
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • KLASIFIKASI KUALITAS KESEGARAN BUAH SEMANGKA BERDASARKAN FITUR WARNA YCbCr MENGGUNAKAN ALGORITMA WEIGTHED K-MEANS
Komentar

Anda harus login sebelum memberikan komentar

Perpustakaan Fakultas Teknik
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Ruang Baca Fakultas Teknik

Kami menyedian Buku ajar ilmu teknik dan Tugas Akhir mahaiswa Fakultas Teknik Universitas Mataram

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik