Perpustakaan Fakultas Teknik

Universitas Mataram

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title

Tugas Akhir Informatika

DETEKSI DINI INFEKSI COVID-19 TANPA GEJALA (ASYMPTOMATIC) MENGGUNAKAN MODEL SUPPORT VECTOR MACHINE (SVM) MELALUI REKAMAN SUARA BATUK PAKSA

NI NYOMAN WAHYUNI INDRASWARI - Nama Orang;

COVID-19 is an infectious disease severe acute respiratory syndrome SARS
CoV-2 which spreads from direct human contact through droplets of mucus in the
respiratory tract of an infected person. The American Centers for Disease Control
and Prevention (CDC) says that asymptomatic COVID-19 patients may account for
more than 50% of the transmission rate. In order to speed up the detection of
COVID-19 cases, the Ministry of Health issued Health Decree No.
HK.01.07/MENKES/446/2021 regarding the use of rapid antigen tests in
establishing an initial diagnosis with accuracy of results ranging from 80-90% in
just a short time, namely 5-50%. Thirty minutes with a price range as of September
3, 2021, starting from Rp.99.000,00 to Rp.109.000,00. This research uses the SVM
(Support Vector Machine) model as a feature extraction processor from voice data
in the training and testing process. This study aims to produce an algorithm from
the SVM model so that it can detect asymptomatic COVID-19 from the extraction
of cough voice recordings. A research team collected forced cough recordings from
the Indian Institute of Technology Kharagpur, available through Kaggle.com,
intending to collect voice data for COVID-19 cough discrimination. Of the 171
subjects studied, 120 subjects (70%) for training data and 51 (30%) for test data.
The data is divided into the SMOTE data and without the SMOTE data process.
The results of the two data have an average performance matrix of above 80%, with
accuracy for without the SMOTE data of 98.3% and for SMOTE data of 100%


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
614.5,Nyo.d
Penerbit
Universitas Mataram : Fakultas Teknik Unram., 2022
Deskripsi Fisik
xii,46 Hlm; Illus; 21x30 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
614.5
Tipe Isi
other
Tipe Media
computer
Tipe Pembawa
audio disc
Edisi
edisi 1
Subjek
Covid 19 penyakit menular
: Accuracy, Asymptomatic, Forced cough
Covid-19, SVM Mode
Info Detail Spesifik
-
Pernyataan Tanggungjawab
NI NYOMAN WAHYUNI INDRASWARI
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • DETEKSI DINI INFEKSI COVID-19 TANPA GEJALA (ASYMPTOMATIC) MENGGUNAKAN MODEL SUPPORT VECTOR MACHINE (SVM) MELALUI REKAMAN SUARA BATUK PAKSA
Komentar

Anda harus login sebelum memberikan komentar

Perpustakaan Fakultas Teknik
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Ruang Baca Fakultas Teknik

Kami menyedian Buku ajar ilmu teknik dan Tugas Akhir mahaiswa Fakultas Teknik Universitas Mataram

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik